|
SIGMA 1 (2005), 006, 14 pages math-ph/0508016
https://doi.org/10.3842/SIGMA.2005.006
Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches
Oleg I. Morozov
Moscow State Technical University of Civil Aviation, 125993 Moscow, Russia
Received August 08, 2005, in final form September 29, 2005; Published online October 13, 2005
Abstract
In this review article we discuss four recent methods for computing
Maurer-Cartan structure equations of symmetry groups of differential equations.
Examples include solution of the contact equivalence problem for linear hyperbolic
equations and finding a contact transformation between the generalized Hunter-Saxton
equation and the Euler-Poisson equation.
Key words:
Lie pseudo-groups; Maurer-Cartan forms; structure equations; symmetries of differential equations.
pdf (283 kb)
ps (201 kb)
tex (18 kb)
References
- Bryant R.L., Griffiths Ph.A.,
Characteristic cohomology of differential systems (II):
conservation laws for a class of parabolic equations,
Duke Math. J., 1995, V.78, 531-676.
- Bryant R., Griffiths Ph., Hsu L.,
Hyperbolic exterior differential systems and their conservation laws.
I, II, Selecta Math., New Ser., 1995, V.1, 21-112, 265-323.
- Bryant R., Griffiths Ph., Hsu L., Toward a
geometry of differential equations, in Geometry, Topology & Physics,
Conf. Proc. Lecture Notes Geom. Topology, IV, Cambridge, Internat. Press,
1995, 1-76.
- Bluman G.W., Kumei S.,
Symmetries and differential equations, New York, Springer, 1989.
- Cartan É.,
Sur la structure des groupes infinis de transformations,
in uvres Complètes, Partie II, Vol. 2,
Paris, Gauthier-Villars, 1953, 571-714.
- Cartan É.,
Les sous-groupes des groupes continus de transformations,
in uvres Complètes, Partie II, Vol. 2,
Paris, Gauthier-Villars, 1953, 719-856.
- Cartan É.,
La structure des groupes infinis, in
uvres Complètes, Partie II, Vol. 2,
Paris, Gauthier-Villars, 1953, 1335-1384.
- Cartan É.,
Les problèmes d'équivalence, in
uvres Complètes, Partie II, Vol. 2,
Paris, Gauthier-Villars, 1953, 1311-1334.
- Cheh J., Olver P.J., Pohjanpelto J.,
Maurer-Cartan equations for Lie symmetry pseudo-groups of differential
equations, J. Math. Phys., 2005, V.46, 023504, 11 pages.
- Clelland J.N.,
Geometry of conservation laws for a class of parabolic partial differential
equations, Selecta Math., New Ser., 1997, V.3, N 1, 1-77.
- Fels M., The equivalence problem for systems of second order
ordinary differential equations, Proc. London Math. Soc., 1995,
V.71, 221-240.
- Fels M., Olver P.J., Moving coframes. I.
A practical algorithm, Acta. Appl. Math., 1998, V.51, 161-213.
- Foltinek K., Quasilinear third-order scalar evolution
equations and their conservation laws, Ph.D. Thesis, Duke University, 1996.
- Flanders H., Differential forms with applications to the
physical sciences, New York - London, Academic Press, 1963.
- Gardner R.B., The method of equivalence and its applications.
CBMS-NSF regional conference series in applied math., Philadelphia, SIAM, 1989.
- Golovin S.V., Group foliation of Euler equations in
nonstationary rotationally symmetrical case,
in Proceedings of Fifth International Conference "Symmetry in Nonlinear
Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko,
R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics,
Kyiv, 2004, V.50, Part 1, 110-117.
- Grissom C., Thompson G., Wilkens G.,
Linearization of second order odes via Cartan's equivalence method,
J. Differential Equations, 1989, V.77, N 1, 1-15.
- Dryuma V., On the Riemann and Einstein-Weil geometry
in theory of the second order ordinary differential equations,
math.DG/0104278.
- Hsu L., Kamran N., Classification of second order ordinary
differential equations admitting Lie groups of fiber-preserving symmetries,
Proc. London Math. Soc., Ser. 3, 1989, V.58, N 2, 387-416.
- Hunter J.K., Saxton R., Dynamics of director fields,
SIAM J. Appl. Math., 1991, V.51, N 6, 1498-1521.
- Ibragimov N.H., Transformation groups applied
to mathematical physics, Dordrecht, Reidel, 1985.
- Ibragimov N.H., Invariants of hyperbolic equations:
solution to Laplace's problem, J. Appl. Mech. Tech. Phys., 2004,
V.45, N 2, 11-21.
- Johnpillai I.K., Mahomed F.M., Wafo Soh C.,
Basis of joint invariants for (1+1) linear hyperbolic equations,
J. Nonlinear Math. Phys., 2002, V.9, Suppl. 2, 49-59.
- Kamran N., Lamb K.G., Shadwick W.F., The local
equivalence problem for y'' = f(x, y, y') and the
Painlevé transcendents, J. Diff. Geometry, 1985, V.22, N 2, 139-150.
- Kamran N., Shadwick W.F., A differential geometric
characterization of the first Painlevé transcendents, Mathematische
Annalen, 1987, V.279, N 1, 117-123.
- Kamran N., Shadwick W.F., Équivalence locale des
équations aux dérivées partielles quasi lineaires du deixième
ordre et pseudo-groupes infinis, Comptes Rendus Acad. Sci. (Paris).
Ser. I, 1986, V.303, 555-558.
- Kamran N., Contributions to the study of the equivalence
problem of Élie Cartan and its applications to partial and
ordinary differential equations, Acad. Roy. Belg. Cl. Sci. Mém. Collect 8° (2),
1989, V.45, N 7.
- Krasil'shchik I.S., Lychagin V.V., Vinogradov A.M., Geometry of
jet spaces and nonlinear partial differential equations,
New York, Gordon and Breach, 1986.
- Laplace P.S., Recherches sur le calcul intégral aux
différences partielles, Mémoires de l'Acad emie Royale de Sciences
de Paris, 1777, 341-401; Reprinted in uvres Complètes,
Vol. 9, Paris, Gauthier-Villars, 1893, 3-68 (English translation, New York, 1966).
- Lie S., Gesammelte Abhandlungen, V.1-6,
Leipzig, Teubner, 1922 - 1937.
- Lisle I.G., Reid G.J., Boulton A.,
Algorithmic determination of structure of infinite Lie pseudogroups of
symmetries of PDEs, in Proc. ISSAC'95, New York, ACM Press, 1995, 1-6.
- Lisle I.G., Reid G.J., Geometry and structure
of Lie pseudogroups from infinitesimal defining equations, J. Symb.
Comp., 1998, V.26, 355-379.
- Morozov O.I., Moving coframes and symmetries of
differential equations, J. Phys. A: Math. Gen., V.35, N 12, 2965-2977.
- Morozov O.I., Symmetries of differential equations and
Cartan's equivalence method,
in Proceedings of Fifth International Conference "Symmetry in Nonlinear
Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko,
R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics,
Kyiv, 2004, V.50, Part 1, 196-203.
- Morozov O.I., Contact equivalence problem for linear
hyperbolic equations, Proceedings of I.G. Petrovsky's Seminar, 2005, V.25,
accepted, math-ph/0406004.
- Olver P.J., Applications of Lie groups to differential
equations, New York, Springer, 1986.
- Olver P.J., Equivalence, invariants, and symmetry,
Cambridge, Cambridge University Press, 1995.
- Olver P.J., Pohjanpelto J., Moving frames for
pseudo-groups. I. The Maurer-Cartan forms, Preprint, University of
Minnesota, 2003.
- Olver P.J., Pohjanpelto J., Moving frames for
pseudo-groups. II. Differential invariants for submanifolds, Preprint,
University of Minnesota, 2003.
- Olver P.J., Rosenau Ph., Tri-Hamiltonian duality between
solitons and solitary wave solutions having compact support,
Phys. Rev. E, 1996, V.53, 1900-1906.
- Ovsiannikov L.V., Group properties of the Chaplygin
equation, J. Appl. Mech. Tech. Phys., 1960, N 3, 126-145.
- Ovsiannikov L.V., Group analysis of differential
equations, New York, Academic Press, 1982.
- Pavlov M.V., The Calogero equation and Liouville type
equations, Theor. and Math. Phys., 2001, V.128, 927-932, nlin.SI/0101034.
- Reyes E.G., The soliton content of the Camassa-Holm and
Hunter-Saxton equations,
in Proceedings of Fourth International Conference "Symmetry in Nonlinear
Mathematical Physics" (July 9-15, 2001, Kyiv), Editors A.G. Nikitin, V.M. Boyko and
R.O. Popovych, Proceedings of Institute of Mathematics,
Kyiv, 2002, V.43, Part 1, 201-208.
- Surovikhin K.P., Cartan's exterior forms and computation of
the basic group admitted by a given system of differential equations,
Moscow Univ. Bulletin, Ser. Math., Mech., 1965, N 6, 70-81 (in Russian).
- Tod K.P., Einstein-Weil spaces and third order differential
equations, J. Math. Phys., 2000, V.41, 5572-5581.
|
|